Basic fibroblast growth factor: receptor-mediated internalization, metabolism, and anterograde axonal transport in retinal ganglion cells.
نویسندگان
چکیده
Basic fibroblast growth factor (bFGF) was radiolabeled and used in axonal transport studies to determine whether certain neuronal populations express functional receptors for bFGF. Unlike 125I-NGF, 125I-bFGF was not retrogradely transported in the adult rat sciatic nerve or from iris to trigeminal ganglion or superior cervical ganglion. However, after intraocular injection of 125I-bFGF into the posterior chamber of the eye of adult rats, radioactivity was detected within the retinal ganglion cell projections. This radioactivity was localized to the ipsilateral optic nerve and in the contralateral lateral geniculate body and the contralateral superior colliculus by using autoradiographic techniques. Direct measurement of the radioactivity in dissected brain regions was used to study the process of 125I-bFGF uptake and transport by retinal ganglion cells. The uptake and transport were specific for biologically active bFGF since neither denatured, biologically inactive 125I-bFGF nor 125I-NGF was taken up and transported. The uptake and transport of 125I-bFGF were saturable phenomena since they were blocked in the presence of excess, unlabeled bFGF. Wheat germ agglutinin, but not heparinase, blocked uptake and transport of 125I-bFGF, a finding that is consistent with the uptake being mediated by high-affinity bFGF receptors. Radioactivity from 125I-bFGF was transported in retinal ganglion cell axons in an anterograde direction at a maximum rate in excess of 1.7 mm/hr. No specific retrograde transport of bFGF to the retina was detected after 125I-bFGF was injected into the superior colliculus. The radioactivity from 125I-bFGF that accumulated in the superior colliculus was lost from this tissue with a half-life of about 22 hr. Autoradiography of proteins separated by SDS-PAGE demonstrated that 125I-bFGF was not substantially degraded in the retina after internalization within retinal ganglion cells. During anterograde transport, however, 125I-bFGF underwent limited proteolytic cleavage resulting in 3 prominent 125I-bFGF derivatives of molecular weights greater than 7000 Da. Although these were the major radioactive species recovered from the superior colliculus after intraocular injection, some intact 125I-bFGF was also detected within the innervated target. These results indicate that retinal ganglion cells express high-affinity receptors for bFGF, that these receptors mediate the internalization of bFGF, that internalized bFGF undergoes limited proteolytic cleavage, and that bFGF and its derivatives are anterogradely transported to the lateral geniculate body and the superior colliculus. These data raise the possibility that bFGF or its derivatives may act as an anterograde trophic factor in the visual system, a system that is known to undergo anterograde transneuronal cell death.
منابع مشابه
Sorting of internalized neurotrophins into an endocytic transcytosis pathway via the Golgi system: Ultrastructural analysis in retinal ganglion cells.
Subcellular pathways and accumulation of internalized radiolabeled neurotrophins NGF, BDNF, and NT-3 were examined in retinal ganglion cells (RGCs) of chick embryos by using quantitative electron microscopic autoradiography. All three neurotrophins accumulated in endosomes and multivesicular bodies. BDNF and NGF also concentrated at the plasma membrane, whereas NT-3 accumulated transiently in t...
متن کاملHeat shock protein 90 in retinal ganglion cells: association with axonally transported proteins.
The mRNAs for heat shock protein 90 (HSP90) are found at highest levels (differentially expressed) in the primate retinal fovea, the region of highest visual acuity, compared to the peripheral retina. HSP90 expression and retinal associations were analyzed by immuno-localization, in situ hybridization, and western analysis. Retinal ganglion cells (RGCs) express much of the HSP90 mRNA present in...
متن کاملExpression of neurotrophin-3 (NT-3) and anterograde axonal transport of endogenous NT-3 by retinal ganglion cells in chick embryos.
Anterograde axonal transport of neurotrophins has been demonstrated recently, but to date such transport has only been shown for brain-derived neurotrophic factor and no other endogenous neurotrophin. Endogenous neurotrophin-3 (NT-3) protein is present in the ganglion cell layer of the chicken retina, as well as the superficial layers of the optic tectum. NT-3 immunolabel in these tectal layers...
متن کاملGeneration of retinal ganglion cells with functional axons from human induced pluripotent stem cells
We generated self-induced retinal ganglion cells (RGCs) with functional axons from human induced pluripotent stem cells. After development of the optic vesicle from the induced stem cell embryoid body in three-dimensional culture, conversion to two-dimensional culture, achieved by supplementation with BDNF, resulted in differentiation of RGCs at a rate of nearly 90% as indicated by a marginal s...
متن کاملRetinal Ganglion Cell Axons Drive the Proliferation of Astrocytes in the Developing Rodent Optic Nerve
We show that the proliferation of astrocytes in the developing rodent optic nerve absolutely depends on axons and that this axonal influence depends on axonal transport but not on axonal electrical activity. We also show that purified retinal ganglion cells stimulate DNA synthesis in optic nerve astrocytes in culture and that the effect can be mimicked by fibroblast growth factor but not by neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 7 شماره
صفحات -
تاریخ انتشار 1990